1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
|
enum Addressing {
eImmediate,
eAccumulator,
eAbsolute,
eAbsoluteIndexedX,
eAbsoluteIndexedY,
eZeroPage,
eZeroPageIndexedX,
eZeroPageIndexedY,
eIndexedIndirect,
eIndirectIndexed,
eImplied,
eIndirectAbsolute,
eRelative
};
typedef int Addressing;
//Holds address of current instruction.
void (*current_instruction)(Addressing, address);
struct AddData{
int cycles;
int length;
byte value;
};
AddData fAddress(Addressing addr, short x) {
AddData ret;
// VALUE
switch(addr){
case eImmediate: ret.value = x; break;
case eAccumulator: ret.value = acc; break;
case eAbsolute: ret.value = Memory[x]; break;
case eAbsoluteIndexedX: ret.value = Memory[(x + X)]; break;
case eAbsoluteIndexedY: ret.value = Memory[(x + Y)]; break;
case eZeroPage: ret.value = Memory[(x & 0x00FF)]; break;
case eZeroPageIndexedX: ret.value = Memory[((x + X) & 0x00FF)]; break;
case eZeroPageIndexedY: ret.value = Memory[((x + Y) & 0x00FF)]; break;
case eIndexedIndirect: ret.value = Memory[ (((address)Memory[x+X+1])<<8) + (Memory[x+X]) ]; break;
case eIndirectIndexed: ret.value = Memory[ (((address)Memory[x+1])<<8) + (Memory[x]) + Y ]; break;
}
// LENGTH
switch(addr){
case eAbsolute: case eAbsoluteIndexedX: case eAbsoluteIndexedY:
ret.length = 3; break;
case eAccumulator:
ret.length = 1; break;
default:
ret.length = 2; break;
}
// CYCLES
switch(current_function){ // Initial value
case &fADC: case &fAND: case &fBIT: case &fCMP: case &fCPX: case &fCPY: case &fEOR: case &fLDA:
case &fLDX: case &fLDY: case &fORA: case &fSBC: case &fSTX: case &fSTY:
switch(addr){
case eImmediate:
ret.cycles = 2; break;
case eZeroPage:
ret.cycles = 3; break;
case eZeroPageIndexedX: case eAbsolute: case eAbsoluteIndexedX: case eAbsoluteIndexedY:
ret.cycles = 4; break;
case eIndexedIndirect:
ret.cycles = 6; break;
case eIndirectIndexed:
ret.cycles = 5; break;
}
break;
case &fASL: case &fDEC: case &fINC: case &fLSR: case &fROL: case &fROR:
switch(addr){
case eAccumulator:
ret.cycles = 2; break;
case eZeroPage:
ret.cycles = 5; break;
case eZeroPageIndexedX: case eAbsolute:
ret.cycles = 6; break;
case eAbsoluteIndexedX:
ret.cycles = 7; break;
}
break;
case &fSTA:
switch(addr){
case eZeroPage:
ret.cycles = 3; break;
case eZeroPageIndexedX: case eAbsolute:
ret.cycles = 4; break;
case eAbsoluteIndexedX: case eAbsoluteIndexedY:
ret.cycles = 5; break;
case eIndexedIndirect: case eIndirectIndexed:
ret.cycles = 6; break;
}
break;
case &fBRK:
ret.cycles = 7;
break;
case &RTI: case &RTS: case &JSR:
ret.cycles = 6;
break;
case &fJMP:
ret.cycles = 5;
break;
case &fPLA: case &fPLP:
ret.cycles = 4;
break;
case &fPHA: case &fPHP:
ret.cycles = 3;
break;
default: //Any instruction which doesn't fit any of these conditions is probably an implied/relative mode instruction which costs 2 cycles
ret.cycles = 2;
}
switch(current_function){ // Page Boundary
case &fADC: case &fSBC: case &fLDA: case &fLDX: case &fLDY: case &fEOR: case &fAND: case &fORA: case &fCMP:
switch(addr){
case eAbsoluteIndexedX:
if ((x & 0xFFFC) != ((x + X) & 0xFFFC)) ret.cycles++; break;
case eAbsoluteIndexedY:
if ((x & 0xFFFC) != ((x + Y) & 0xFFFC)) ret.cycles++; break;
case eIndirectIndexed: //I am not 100% sure if this is the correct handling a page boundary cross with indirect indexed addressing. also its kinda ugly
if( (((((address)Memory[x+1])<<8) + (Memory[x]) + Y) & 0xFFFC) !=
(((((address)Memory[x+1])<<8) + (Memory[x])) & 0xFFFC)) ret.cycles++; break;
}
}
}
|